Things You Can Do Over Break #1: Science Edition

Learn some science! (First, crack open a beer–(I’m assuming positive effects irrespective of sex)):

“We live in a society absolutely dependent on science and technology,” Carl Sagan famously quipped in 1994, “and yet have cleverly arranged things so that almost no one understands science and technology. That’s a clear prescription for disaster.” Little seems to have changed in the nearly two decades since, and although the government is now actively encouraging “citizen science,” for many “citizens” the understanding of — let alone any agreement about — what science is and does remains meager.So, what exactly is science, what does it aspire to do, and why should we the people care? It seems like a simple question, but it’s an infinitely complex one, the answer to which is ever elusive and contentious. Gathered here are several eloquent definitions that focus on science as process rather than product, whose conduit is curiosity rather than certainty.

Salon spoke with Kelly about hiding the science behind disgust, why we’re captivated by things we find revolting, and how it can be a very dangerous thing.

One of the classic conundrums in paleoanthropology is why Neandertals went extinct while modern humans survived in the same habitat at the same time. (The phrase “modern humans,” in this context, refers to humans who were anatomically—if not behaviorally—indistinguishable from ourselves.) The two species overlapped in Europe and the Middle East between 45,000 and 35,000 years ago; at the end of that period, Neandertals were in steep decline and modern humans were thriving. What happened?…

There is no shortage of hypotheses. Some favor climate change, others a modern-human advantage derived from the use of more advanced hunting weapons or greater social cohesion. Now, several important and disparate studies are coming together to suggest another answer, or at least another good hypothesis: The dominance of modern humans could have been in part a consequence of domesticating dogs—possibly combined with a small, but key, change in human anatomy that made people better able to communicate with dogs.

It is natural for those not deeply involved in the half-century quest for the Higgs to ask why they should care about this seemingly esoteric discovery. There are three reasons.

First, it caps one of the most remarkable intellectual adventures in human history — one that anyone interested in the progress of knowledge should at least be aware of.

Second, it makes even more remarkable the precarious accident that allowed our existence to form from nothing — further proof that the universe of our senses is just the tip of a vast, largely hidden cosmic iceberg.

And finally, the effort to uncover this tiny particle represents the very best of what the process of science can offer to modern civilization.

Over the next few years, Doeleman says, he and his group will combine as many as a dozen of the world’s most sophisticated radio-astronomy installations to create “the biggest telescope in the history of humanity”—a virtual dish the size of Earth, with 2,000 times the resolution of the Hubble Space Telescope. Tonight the Event Horizon Telescope astronomers have a more limited goal: They want to catch as much light from Sagittarius A* as possible and study its polarization to learn about the black hole’s magnetic field. But eventually (if all goes well) astronomers using the fully scaled-up Event Horizon Telescope—a machine with resolution high enough to read the date on a quarter from 3,000 miles away—will see the silhouette of an object that is, in itself, unseeable.

Imagine trying to learn biology without ever using the word “organism.” Or studying to become a botanist when the only way of referring to photosynthesis is to spell the word out, letter by painstaking letter.

For deaf students, this game of scientific Password has long been the daily classroom and laboratory experience. Words like “organism” and “photosynthesis” — to say nothing of more obscure and harder-to-spell terms — have no single widely accepted equivalent in sign language. This means that deaf students and their teachers and interpreters must improvise, making it that much harder for the students to excel in science and pursue careers in it.

The idea of building artificial life forms, whether in software or in synthetic cytoplasm, has always been controversial. Mary Shelley, almost 200 years ago, wrote a deep meditation on this theme: Frankenstein, or the Modern Prometheus. In Shelley’s time the debate was framed in terms of vitalism versus mechanism. The vitalists argued that living things are distinguished from inorganic matter by some “spark of life” or animating principle. The opposing mechanist view had its greatest early champion in René Descartes, who compared animals to clockwork automata.

Within the world of science, the doctrine of vitalism is long dead, and yet there is still resistance to the idea that life is something we can fully comprehend by disassembling an organism and cataloging its component parts. In the brash early years of molecular biology, DNA was “the blueprint of life,” a full set of instructions for building a cell…Now that we read DNA sequences quite fluently, it seems clearer that there’s more to life than the “central dogma” of molecular biology.

The idea of simulating a living cell with a computer program stands in the crossfire of this argument between reductionism and a more integrative vision of biology. On one hand, the WholeCell project makes abundantly clear that the DNA sequence by itself is not the master key to life. Even though the transfer of information from DNA to RNA to protein is a central element of the model, it is not handled as a simple mapping between alphabets. The emphasis is on molecules, not symbols.

On the other hand, the very attempt to build such a model is a declaration that life is comprehensible, that there’s nothing supernatural about it, that it can be reduced to an algorithm—a finite computational process. Everything that happens in the simulated cell arises from rules that we can enumerate and understand, for the simple reason that we wrote those rules.

I would love to believe that the success of simulation methods in biology might forge a new synthesis and put an end to philosophical bickering over these questions. I’m not holding my breath.

What made antibiotics so wildly successful was the way they attacked bacteria while sparing us. Penicillin, for example, stops many types of bacteria from building their cell walls. Our own cells are built in a fundamentally different way, and so the drug has no effect. While antibiotics can discriminate between us and them, however, they can’t discriminate between them and them–between the bacteria that are making us sick and then ones we carry when we’re healthy. When we take a pill of vancomycin, it’s like swallowing a grenade. It may kill our enemy, but it kills a lot of bystanders, too.

Using simple behavioral tests, Wright’s research team showed that like other lab-tested brooders — which so far include us, monkeys, dogs, and starlings — stressed bees tend to see the glass as half empty. While this doesn’t (and can’t) prove that bees experience human-like emotions, it does give pause. We should take seriously the possibility that it feels like something to be an insect.

The concept that current humanity could possibly be living in a computer simulation was first seriously proposed in a 2003 paper published in Philosophical Quarterly by Nick Bostrom, a philosophy professor at the University of Oxford. In the paper, he argued that at least one of three possibilities is true:

  • The human species is likely to go extinct before reaching a “posthuman” stage.
  • Any posthuman civilization is very unlikely to run a significant number of simulations of its evolutionary history.
  • We are almost certainly living in a computer simulation.

Savage said, however, signatures of resource constraints in present-day simulations are likely to exist as well in simulations in the distant future. These constraints include the imprint of an underlying lattice if one is used to model the space-time continuum.

Is scientism defensible? Is it really true that natural science provides a satisfying and reasonably complete account of everything we see, experience, and seek to understand — of every phenomenon in the universe? And is it true that science is more capable, even singularly capable, of answering the questions that once were addressed by philosophy? This subject is too large to tackle all at once. But by looking briefly at the modern understandings of science and philosophy on which scientism rests, and examining a few case studies of the attempt to supplant philosophy entirely with science, we might get a sense of how the reach of scientism exceeds its grasp.

One thought on “Things You Can Do Over Break #1: Science Edition

  1. Great stuff, PhiloDave!
    I’ve looked at a few of the links and found them useful. Perhaps a reply to a couple of the links may be in the mix down the road. (Beer makes men smarter? Did someone down a six-pack while writing that one?!? Seriously? What a limited scope and disservice to science that was! Sorry, hope it wasn’t a personal favorite.)
    Thanks for the post.
    I really want to come back and comment on a few.
    They made me think.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s